Using Polynomial equations in C#
In this C# polynomial equation tutorial, you'll learn how to model and animate a moving object along a cubic curve using mathematical formulas. This hands-on project demonstrates how to solve polynomial equations and translate them into visual motion-ideal for senior secondary students learning both math and coding.
Understanding Polynomial and Cubic Equations | Maths Explanation for C# Kids
A polynomial equation expresses a relationship involving powers of a variable.
For a cubic curve, the general form is:
y = ax3 + bx2 + cx + d;
Here, a, b, c, and d are constants. Every third-degree polynomial equation
has both a maximum and a minimum point.
These turning points are useful in generating smooth motion when graphing or animating curves with C#.
Deriving the Equation of a Cubic Curve | Maths Explanation for C# Kids
To generate a cubic equation, all we will need are the maximum and minimum points of the curve.
y = ax3 + bx2 + cx + d ----- (eqn 0)
By differentiating y = ax³ + bx² + cx + d, we get dy/dx = 3ax² + 2bx + c. Setting the derivative equal to zero at both the maximum and minimum points allows us to calculate a, b, c, and d.
dy/dx = yI = 3ax2 + 2bx + c
At maximum point, yI = 0
yI|(x = xmax) = 0
3axmax2 + 2bxmax + c = 0 ----- (eqn 1)
At minimum point, yI = 0
yI|(x = xmin) = 0 ----- (eqn 2)
3axmin2 + 2bxmin + c = 0
Subtracting both derived equations
yI|(x = xmax) -
yI|(x = xmin)
⇒
3a(xmax2 - xmin2)
+ 2b(xmax - xmin) = 0
2b(xmax - xmin) =
-3a(xmax2 - xmin2)
| b = | -3a(xmax - xmin)(xmax + xmin) |
| 2(xmax - xmin) |
b = -3/2a(xmax + xmin)
Substituting b in (eqn 1)
3axmax2 + 2bxmax + c = 0
3axmax2 +
2(-3a/2)(xmax + xmin)xmax
+ c = 0
3axmax2 -
3axmax(xmax + xmin)
+ c = 0
3axmax2 - 3axmax2
- 3axmaxxmin + c = 0
c = 3axmaxxmin
From the general equation(eqn 0)
y = ax3 + bx2 + cx + d
ymax = axmax3 +
bxmax2 + cxmax + d
Substituting for b & c
⇒ ymax = axmax3 -
3/2a(xmax + xmin)xmax2
+ 3axmaxxminxmax + d
ymax = axmax3 -
3/2axmax3 -
3/2axmax2xmin
+ 3axmax2xmin + d
ymax = 1/2[2axmax3
- 3axmax3 - 3axmax2xmin
+ 6axmax2xmin + 2d]
ymax = 1/2[
-axmax3 +
3axmax2xmin + 2d]
2ymax = -a(xmax -
3axmin)xmax2 + 2d
2d = 2ymax + a(xmax -
3axmin)xmax2
d = ymax + a/2(xmax -
3axmin)xmax2
From the general equation(eqn 0)
y = ax3 + bx2 + cx + d
ymax = axmax3 +
bxmax2 + cxmax + d
ymin = axmin3 +
bxmin2 + cxmin + d
Subtracting both derived equations
ymax - ymin =
a(xmax3 - xmin3)
+ b(xmax2 - xmin2)
+ c(xmax - xmin)
ymax - ymin =
(xmax - xmin)[a(xmax2
+ xmaxxmin + xmin2)
+ b(xmax + xmin) + c]
Substituting for b & c
ymax - ymin =
(xmax - xmin)[a(xmax2
+ xmaxxmin + xmin2)
- 3a/2(xmax + xmin)2
+ 3axmaxxmin]
ymax - ymin =
a(xmax - xmin)[xmax2
+ xmaxxmin + xmin2
- 3/2(xmax2 +
2xmaxxmin + xmin2)
+ 3xmaxxmin]
2(ymax - ymin) =
a(xmax - xmin)[2xmax2
+ 2xmaxxmin + 2xmin2
- 3(xmax2 + 2xmaxxmin
+ xmin2) + 6xmaxxmin]
2(ymax - ymin) =
a(xmax - xmin)(2xmax2
+ 2xmaxxmin + 2xmin2
- 3xmax2 - 6xmaxxmin
- 6xmin2 + 6xmaxxmin)
2(ymax - ymin) =
a(xmax - xmin)(-xmax2
+ 2xmaxxmin - xmin2)
2(ymax - ymin) =
-a(xmax - xmin)(xmax2
- 2xmaxxmin + xmin2)
2(ymax - ymin) =
-a(xmax - xmin)(xmax
- xmin)2
2(ymax - ymin) =
-a(xmax - xmin)3
| a = | -2(ymax - ymin) |
| (xmax - xmin)3 |
b = -3/2a(xmax + xmin)
c = 3axmaxxmin
&
d = ymax + a/2(xmax -
3axmin)xmax2
These formulas form the mathematical basis of our C# polynomial solver.
Generating and Animating along a Cubic Polynomial Curve in C#
Once we determine the constants, we can implement a C# cubic equation solver to animate motion along the curve. The following example shows how to code a polynomial equation in C# using simple variables and C# windows form graphics.
To animate an object along a polynomial curve, increment x continuously and compute its corresponding y value using the cubic polynomial equation.
This C# code allows you to visualize the trajectory of a polynomial equation by plotting the curve dynamically on a C# windows form. The roots of the polynomial equation and the coefficients determine the shape and symmetry of the curve.
Create a new C# Windows Forms Application
project
;
call it Dymetric_CS.
Create 2 new C# classes;
Call them Dymetric and CubicPath.
Type out the adjoining C# code for animating an image body through
the path of a cubic / polynomial curve.
Key Takeaways on Cubic Path Animation in C#
In this tutorial, you learned how to:
- Understand and derive cubic polynomial equations
- Find coefficients from maximum and minimum points
- Implement a polynomial equation solver using C#
- Animate an object along a polynomial curve
By combining algebraic reasoning with code, senior secondary students can see how mathematics powers real-world applications like animation, computer graphics, and game design.
Applications of Polynomial Equations C# Programming and STEM Education
Polynomial equations are used in:
- Data modeling and curve fitting
- Graphics programming for drawing smooth curves
- Physics simulations and motion paths
- Machine learning and optimization problems
Learning how to solve polynomial equations in C# provides a strong foundation for both mathematics and computational thinking.
Summary: Visualizing Polynomial Equations in C#
Polynomial equations are powerful tools for generating smooth, curved motion in graphics and animations. In this tutorial, you've learnt how to solve polynomial equations in C#, understand the mathematics of cubic curves, and create a simple animation that moves an image body along a polynomial equation path.
This interactive C# polynomial solver visually demonstrates how mathematical equations can be represented as real motion on a graph. It's a simple yet powerful example of combining coding and mathematics for educational purposes.
So! C# Fun Practice Exercise - Animate along Cubic Path
As a fun practice exercise, try modifying the values of xmax, xmin, ymax,
and ymin to observe how they affect the polynomial equation graph. You can also:
- Write a function to calculate the roots of the polynomial.
- Compare your results with a quadratic equation solver.
- Build a reusable polynomial equation solver in C#.
C# Cubic Path Window Display Code Stub
C# Cubic Path Code for Dymetric Class
namespace Dymetric
{
class Dymetric
{
private CubicPath cube_curve;
private bool do_simulation;
public Dymetric(int screen_width, int screen_height)
{
cube_curve = new CubicPath(screen_width, screen_height);
do_simulation = false;
}
// decide what course of action to take
public void decideAction(PaintEventArgs e, bool click_check)
{
if (do_simulation && click_check)
{
// do animation
cube_curve.inPlay(e);
do_simulation = false;
}
else
{
// Put ball on screen
cube_curve.clearAndDraw(e);
do_simulation = true;
}
}
}
}
C# Animation Code for Cubic Path Class
using System.Threading;
using System.Drawing;
using System.Windows.Forms;
namespace Dymetric
{
class CubicPath
{
private int x_start, x_max, y_max, x_min, y_min, x, y;
private double a, b, c, d;
private const int dotDIAMETER = 10;
// we'll be drawing to and from a bitmap image
private Bitmap offscreen_bitmap;
Graphics offscreen_g;
private Brush dot_colour, bg_colour;
public CubicPath(int screen_width, int screen_height)
{
dot_colour = new SolidBrush(Color.Yellow);
bg_colour = new SolidBrush(Color.LightGray);
// Create bitmap image
offscreen_bitmap = new Bitmap(screen_width, screen_height - 55,
System.Drawing.Imaging.PixelFormat.Format24bppRgb);
// point graphic object to bitmap image
offscreen_g = Graphics.FromImage(offscreen_bitmap);
// Set background of bitmap graphic
offscreen_g.Clear(Color.LightGray);
x_start = x = 20;
x_max = offscreen_bitmap.Width / 4 + 10;
y_max = 20;
x_min = 3 * offscreen_bitmap.Width / 4 - 10;
y_min = offscreen_bitmap.Height - 70;
// constants
a = (-2 * (y_max - y_min)) / Math.Pow((x_max - x_min), 3);
b = -((double)3 / 2) * a * (x_max + x_min);
c = 3 * a * x_max * x_min;
d = y_max + (a / 2) * (x_max - 3 * x_min) * Math.Pow(x_max, 2);
y = (int)Math.Round(a * Math.Pow(x, 3) + b * Math.Pow(x, 2) + c * x + d);
}
// draw first appearance of dot on the screen
public void clearAndDraw(PaintEventArgs e)
{
/*
* draw to offscreen bitmap
*/
// clear entire bitmap
offscreen_g.Clear(Color.LightGray);
// draw dot
offscreen_g.FillEllipse(dot_colour, x, y, dotDIAMETER, dotDIAMETER);
// draw to screen
Graphics gr = e.Graphics;
gr.DrawImage(offscreen_bitmap, 0, 55, offscreen_bitmap.Width, offscreen_bitmap.Height);
}
// repetitively clear and draw dot on the screen - Simulate motion
public void inPlay(PaintEventArgs e)
{
Graphics gr = e.Graphics;
// condition for continuing motion
while (x < offscreen_bitmap.Width - dotDIAMETER && y >= y_max)
{
// redraw dot
offscreen_g.FillEllipse(dot_colour, x, y, dotDIAMETER, dotDIAMETER);
// draw to screen
gr.DrawImage(offscreen_bitmap, 0, 55, offscreen_bitmap.Width, offscreen_bitmap.Height);
x += 20;
y = (int)Math.Round(a * Math.Pow(x, 3) + b * Math.Pow(x, 2) + c * x + d);
// take a time pause
Thread.Sleep(50);
}
x = x_start;
y = (int)Math.Round(a * Math.Pow(x, 3) + b * Math.Pow(x, 2) + c * x + d);
}
}
}