usingMaths.com
From Theory to Practice - Math You Can Use.







<< PreviousNext >>

Quadratic Equation in VB.Net | How to Solve and Animate Quadratic Curves



Understanding the Quadratic Function | Maths Explanation for VB.Net Kids

In this tutorial, we'll explore how to solve quadratic equations in VB.Net and use them to plot and animate a quadratic curve on a VB.Net windows form. Understanding the quadratic equation in programming helps you create parabolic motion, simulations, and engaging math visuals.

A quadratic equation has the general form y = ax2 + bx + c; where a, b, and c are constants. This tutorial explains how to solve, plot, and animate a quadratic function using VB.Net and the VB.Net windows form.

VB.Net graph of quadratic curve
Figure: VB.Net graph of quadratic curve

Generating Quadratic Curves for VB.Net

To generate a quadratic curve in VB.Net, you need two points - the starting point and the vertex (turning point - maximum or minimum).

Quadratic equation graph in VB.Net showing quadratic points - start point and turning (maximum) point.
Figure: Quadratic equation graph in VB.Net showing quadratic points - start point and turning (maximum) point.

The general quadratic function is:

y = ax2 + bx + c

dy/dx = yI = 2ax + b
At maximum / minimum point, yI = 0
yI|(x = xmax) = 0
2axmax + b = 0
b = -2axmax

Substituting b in the general equation
y = ax2 + bx + c
  = ax2 - 2axmaxx + c

         At (xstart, ystart):
ystart = axstart2 - 2axmaxxstart + c
         At (xmax, ymax):
ymax = axmax2 - 2axmax2 + c
    = -axmax2 + c     --------- (eqn *)

Subtracting both derived equations
ystart - ymax = axstart2 - 2axmaxxstart + axmax2
(xstart2 - 2xmaxxstart + xmax2)a = ystart - ymax

Hence:
a   =    ystart - ymax  =  ystart - ymax
xstart2 - 2xmaxxstart + xmax2 (xstart - xmax)2

b = -2axmax
       & from (eqn *)
c = ymax + axmax2


VB.Net Code Example: Quadratic Path Animation

Once we have the equation, we can generate a quadratic curve with VB.Net to visualize its motion. The following example demonstrates how to animate an object along a quadratic curve in VB.Net using the VB.Net windows form. This is a simple form of quadratic motion simulation that helps visualize parabolic motion, such as a ball being thrown.

To make a body travel by the equation of a quadratic curve, continuously increment x by some interval, and use the quadratic equation to get the corresponding y value.

Create a new Visual Basic Windows Forms Application project ; call it Dymetric_VB.
Create 3 new VB.Net classes;
Call them Facet, Dymetric and QuadraticPath.
Type out the adjoining VB.Net code for animating an image body through the path of a quadratic curve.
This simple example demonstrates VB.Net quadratic animation.


Key Takeaways on Quadratic Path Animation in VB.Net

  • A quadratic function in VB.Net models parabolic motion or curves.
  • The quadratic equation VB.Net code can be used for plotting and animations.
  • The constants a, b, and c control the shape and direction of the parabola.

Applications in Programming and Education

The quadratic equation in VB.Net is useful for programming concepts like projectile motion, trajectory planning, and smooth animation curves. Teachers can use this example to show how maths and coding connect - making parabolas come alive through VB.Net programming.

Teachers and students can use this VB.Net quadratic formula tutorial to explore math and programming together. It's a practical example of using maths with code.

Summary: Visualizing Quadratic Equations in VB.Net

In this tutorial, you've learnt how to solve quadratic equations in VB.Net using the quadratic formula. We've also explore how to plot and animate a quadratic curve on a VB.Net windows form. Understanding how to code the quadratic equation in VB.Net is useful for creating simulations, parabolic motion, and smooth animations.

By combining mathematics and VB.Net, you can solve and animate quadratic equations easily. Whether you're plotting parabolas, simulating motion, or building educational tools, mastering the quadratic formula in VB.Net gives you a solid foundation in computational math.


So! VB.Net Fun Practice Exercise - Animate along Quadratic Path

As a fun practice exercise, try adjusting the coefficients a, b, and c to change the curve's shape or motion pattern. This will be a great way to connect mathematics and programming, and help you understand more about VB.Net animations and quadratic equations.







VB.Net Quadratic Path Window Display Code Stub

Public Class Form1

    Private form_details As New Facet
    Private action_class As New Dymetric

    Private Sub Form1_Load(sender As Object, e As EventArgsHandles MyBase.Load
        ' Fill in Form - Put button on form
        form_details.formFeatures(sender)
    End Sub

    Private Sub Form1_Paint(sender As Object, e As PaintEventArgsHandles Me.Paint
        ' Colour button area
        form_details.decorateButtonArea(sender, e)

        ' Call MovingBody class into action
        action_class.decideAction(sender, Me.CreateGraphics(), form_details.CLICK_OCCURRED)

        ' Reset click variable
        form_details.CLICK_OCCURRED = False
    End Sub
End Class

VB.Net Quadratic Path Facet Window Code Stub

Public Class Facet

    Dim screen_rect As Rectangle
    Public CLICK_OCCURRED As Boolean = False

    Public Sub formFeatures(sender As Object)
        'Set window position, width and height
        screen_rect = Screen.PrimaryScreen.Bounds
        sender.SetDesktopBounds(0, 0, screen_rect.Width, screen_rect.Height)

        ' Set a display text
        sender.Text = "useOfMaths.com"

        ' Set a background colour
        sender.BackColor = System.Drawing.Color.LightGray

        ' Set an icon image
        Dim path = System.IO.Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().CodeBase)
        path = New Uri(path).LocalPath
        Try
            sender.Icon = New Icon(path & "\useOfMaths.ico")
        Catch ex As System.IO.FileNotFoundException
            ' Well, just go on and use default pic
        End Try

        '
        'create a button - response_btn
        '
        Dim response_btn As New Button()
        response_btn.BackColor = System.Drawing.Color.Magenta
        response_btn.ForeColor = System.Drawing.Color.Blue
        response_btn.Name = "response_btn"
        response_btn.SetBounds(CInt(Math.Round(screen_rect.Width / 2)) - 50, 5, 100, 40)
        response_btn.Text = "Move"
        sender.Controls.Add(response_btn)
        AddHandler response_btn.Click, AddressOf response_btn_Click
    End Sub

    Public Sub decorateButtonArea(sender As Object, e As PaintEventArgs)
        ' Draw a dotted line
        Dim pencil As New System.Drawing.Pen(System.Drawing.Color.Black)
        pencil.DashStyle = Drawing2D.DashStyle.DashDot
        pencil.Width = 5
        e.Graphics.DrawLine(pencil, 0, 50, sender.Width, 50)
        pencil.Dispose()

        ' Colour region
        Dim paint_brush As New System.Drawing.SolidBrush(System.Drawing.Color.Pink)
        e.Graphics.FillRectangle(paint_brush, 0, 0, sender.Width, 50)
        paint_brush.Dispose()
    End Sub

    Public Sub response_btn_Click(sender As Object, e As EventArgs)
        ' turn this on on every button click
        CLICK_OCCURRED = True
        sender.Refresh()
    End Sub
End Class

VB.Net Quadratic Path Code for Dymetric Class

Public Class Dymetric
    Private quad_curve As New QuadraticPath
    Private do_simulation = False

    ' decide what course of action to take
    Public Sub decideAction(sender As Object, g As Graphics, click_check As Boolean)
        If do_simulation And click_check Then
            ' do animation
            quad_curve.play(sender, g)
            do_simulation = False
        Else
            ' Put ball on screen
            quad_curve.prep(sender, g)
            do_simulation = True
        End If
    End Sub
End Class


VB.Net Animation Code for Quadratic Path Class

Public Class QuadraticPath

    Private x_start, y_start, x_max, y_max, x, y As Integer
    Private a, b, c As Double
    Private Const dotDIAMETER = 10

    Dim dot_colour As New System.Drawing.SolidBrush(System.Drawing.Color.Yellow)
    Dim bg_colour As New System.Drawing.SolidBrush(System.Drawing.Color.LightGray)

    ' draw first appearance of dot on the screen
    Public Sub prep(sender As Object, g As Graphics)
        x_start = 10
        y_start = sender.Height - 70
        x_max = Math.Round(sender.Width / 2) - 5
        y_max = 70
        x = x_start
        y = y_start

        ' constants
        a = (y_start - y_max) / Math.Pow((x_start - x_max), 2)
        b = -2 * a * x_max
        c = y_max + a * Math.Pow(x_max, 2)

        ' clear entire used canvas area
        g.FillRectangle(bg_colour, 0, 60, sender.Width, sender.Height)
        ' draw dot
        g.FillEllipse(dot_colour, x, y, dotDIAMETER, dotDIAMETER)
    End Sub

    ' repetitively clear and draw dot on the screen - Simulate motion
    Public Sub play(sender As Object, g As Graphics)
        ' condition for continuing motion
        Do While x < sender.Width - dotDIAMETER And y <= y_start
            ' redraw dot
            g.FillEllipse(dot_colour, x, y, dotDIAMETER, dotDIAMETER)

            x += 10
            y = CInt(Math.Round(a * x * x + b * x + c))
            ' take a time pause
            Threading.Thread.Sleep(50)
        Loop
    End Sub
End Class





<< PreviousNext >>